

Towards High Fidelity Face Relighting with Realistic Shadows Andrew Hou¹, Ze Zhang¹, Michel Sarkis², Ning Bi², Yiying Tong¹, Xiaoming Liu¹

Problem Overview

Face relighting is the problem of turning a source image of a human face into a new image of the same face under a desired illumination different from the original lighting.

Related Work

- Prior face relighting methods can handle diffuse lightings, assumes light is evenly scattered across the face, produces soft shadows.
- Cannot handle strong directional light, which produces hard shadows such as cast shadows around the nose.
- Existing methods can also struggle to preserve the subject's facial details during relighting.

Contributions

- We propose a novel face relighting method that models both high-contrast cast shadows and soft shadows, while preserving the local facial details.
- Our technical approach involves single image based ratio image estimation to better preserve local details, shadow border reweighting to handle hard shadows, and ambient light compensation to account for dataset differences.
- Our approach achieves the state-of-the-art relighting results on two benchmarks quantitatively and qualitatively.

Shadow Mask Estimation and Shadow Border Weights

Input Image

Shadow Border Weights

Overlaid on Image

- We estimate the shadow mask through ray tracing using estimated 3D face geometry from 3DMM fitting and target light direction.
- Shadow mask shows where hard shadows lie.
- From the shadow mask, we compute where shadow borders lie.
- We apply higher weights during training on the pixels near the shadow borders.
- **Key insight**: gradient near the borders of hard shadows is often very steep and requires high weights to properly handle.

Michigan State University¹, Qualcomm Technologies Inc.²

Model Architecture

Input image converted to YUV space.

U/V channels

- Input: Y channel and target lighting l_t , Output: ratio image R_p and source lighting l_p .
- Higher loss weights near shadow borders to properly handle the steep gradients.

FFHQ Relighting Performance (In-the-Wild)

Ablation Studies

Input Image Target Lighting Proposed

w/o Shadow **Border Weights**

Input Image

SfSNet

Target Lighting Proposed

w/o Ratio Image

Multi-PIE Experiments Multi-PIE Evaluation Using Target Lightings

Method	Si-MSE	
SfSNet [24]	0.0545 ± 0.0201	0.
DPR [41]	0.0282 ± 0.0125	0.
Nestmeyer [20]	0.0484 ± 0.0318	0.
Our model	0.0220 ± 0.0078	0.0

Target Lighting Results (mean \pm standard deviation)

Multi-PIE Evaluation Using Lighting Transfer

Input Image Reference Image Target Image

Method	Si-MSE	MSE	DSSIM
Shih [27]	0.0374 ± 0.0190	0.0455 ± 0.0203	0.2260 ± 0.0443
Shu [28]	0.0162 ± 0.0102	0.0243 ± 0.0170	0.1383 ± 0.0499
Our model	0.0148 ± 0.0096	0.0204 ± 0.0153	0.1150 ± 0.0404

Lighting Transfer Results (mean \pm standard deviation)

Facial Detail Preservation Evaluation (VGG-Face)

Takeaways

MSE DSSIM 1330 ± 0.0531 | 0.3151 ± 0.0523 0702 ± 0.0361 0.1818 ± 0.0490 0.584 ± 0.0335 0.2722 ± 0.0950 $0292 \pm 0.0148 | 0.1605 \pm 0.0487$

Our Model

Shu *et al.*

- Cosine similarity between VGG-Face features of relit and groundtruth Multi-PIE images.
- Our method's cosine similarity is noticeably higher for earlier layers of VGG-Face, which indicates we better preserve local facial details

• An effective way to handle hard shadows is to focus on the high-contrast shadow borders. Estimating the ratio image better preserves the facial details of the subject during relighting.